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ABSTRACT

Optimum control theory is applied to develop a guidance law for homing
missiles. An existing, closed form, general solution of the '"minimum error
regulator” problem is applied to a previously solved problem which uses a very
simple plant model, in order to verify its applicability. The solution method is
then applied to a system that includes autopilot lag, and in this case the optimum
law is shown to differ from proportional navigation.
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‘Section |, INTRODUCTION

The technique of proportional navigation has been found to be the most
satisfactory method of guiding homing missiles — a fact established by engineers
through many years of design experience rather than by analytical proof. In
proportional navigation, an attempt is made to mechanize the following equation:

y=NA; 2<N =5,

where vy is the missile angular turning rate and A i8 the line-of-sight angular
rate referred to inertial space. N' is denoted as the "Navigation Ratio,' and
again, the range of acceptable values has been developed mainly through
experience. It is interesting to note that recently it has been rigorously deter-
mined by means of modern control theory that proportional navigation is indeed
optimal in that for unconstrained control effort, the miss distance at intercept
is minimized in the mean-squared sense. The correspondence between
proportional navigation and optimum control has been demonstrated by Bryson,
Ho, and Baron,! Janus,? and Speyer,® among others.

The purpose of this study is to cast the simplified homing problem solved
by Speyer in the above referenced report as a "minimum error regulator'
problem, This problem is solved in closed form by Ogata,4 who used the
generalized quadratic index as a performance criterion, It will be shown that the
Ogata method yields identiczal results to the Speyer variational solution, and can
thus be verified to be applicable to the problem. The problem is then extended to
include autopilot lag, and a new solution obtained, from which several interesting
conclusions can be drawn regarding the form of the control law and the nature of
the navigation ratio,

Y. C. Ho, A. E. Bryson, S. Baron, "Differential Games and Optimal
Pursuit-Evasion Strategies,' IEEE Transactions on Automatic Control, AC-10,
No. 4, October 1965, pp. 385-389.

2y. P. Janus, Homing Guidance, Aerospace Corporation, El Segundo,
California, Report No. TOR-469(9990) -1, December 1964,

37. Speyer, Optimal Control Theory and Biased Proportional Navigation,
Raytheon Corporation, Bedford, Massachusetts, Memo SAD-330, November
1967,

K. Ogata, State Space Analysis of Control Systems, Englewood Cliffs,
New Jersey, Prentice-Hall, 1964, pp. 547-557.




Section Il. THE MINIMUM ERROR REGULATOR PROBLEM

Any iinear dynamical system of the nth order can be expressed either as

‘an nth order differential equation or a set of n first order differential equations,
The latter is known as the state formulation,” and is used herein, since it lends
itself to matrix-vector notation and manipulation. It will be assumed that the
system differential equation is given by:

J’:=Ax+Bu; x(0) = C ,
where
X = n dimensional column state vector
u = r dimensional control vector
A = n X n matrix
B = n x r matrix

and where the following index is to be minimized:

T T
J(C,T) = x*(T)Px(T) + [ x*()@x(t)dt + | w*(t)R(t)u(t)dt
Terminal State Control cost
state weighting
weighting

where the * symbol denotes the conjugate transpose of the vector, or simply the
transpose for real vectors, and P, Q(t), R(t) are matrices of appropriate
dimensions,

Ogata shows that the optimum controller for such a system can be
obtained by solving the nonhomogeneous matrix Riccati equation:

%’;. = -sA - A%s + sBR™1(0)B*s = Q(0)

If the matrices A and B are constant, i.e. , if the system is stationary, the
above matrix equation can be solved in closed form for the time T:



8(T) = {[@g(T) + b(T)PI[dys(T) + ¢4, (T)PI7}

where the ¢, are obtained from partitioning the matrix

ij |
SN R R
$21(T) : $22(T)
and M is defined as
-A : BR™!(0) B*
M= |[—— == —————
Q(0) | A’

from which it can be seen that M is known from the problem statement and the
performance index.

Once s(T) is known, the optimum control vector can be obtained from
the expression

uopt(t) = «-F(T - t)x(t) ,

where
F(T - t) = R™I(t)B*s(T - t)

In block diagram form, the optimum controller can be depicted as in Figure 1.

¥ vopr() SYSTEM ki
F(T-1

x= Ax + Bu

FIGURE 1. OPTIMAL CONTROL SYSTEM



The solution of the subject problem can then be summarized as follows:
1) From system state equations, and the given performance index, the

following matrices are known:

v

As B’ P! Q! R

2) The matrix M can be formed from above

3) From knowledge of M, eMT can be found. There are several
methods for computing this, but the use of the Laplace transform is
often the most convenient. This method involves the relationship

’ £[emj = [8I - M)-!

where s is the Laplace operator and I the unit matrix,

4) Once eM'r is known, all of the ¢, are obtained from the relation

A y
| .

i _ | | eum |

$91(T) } ¢22<T>_I

From this, s(T) can be computed:
8(T) = {[$91(T) + dpa(T)PI[d11(T) + dp(T)PI7Y}

5) Once s8(T) is known, u0 t(t) and F(T - t) are immediately
obtainable: P

F(T - t) = R~ (t)B*s(T - t)

uot(® = F(T = )x(t)

The optimum system thus mechanized will minimize the given quadratic index
in the solution interval 0 =< t = T, It should be noted that the optimum solu-
tion is given in terms of time-to~go (T - t) rather than elapsed time t.



Section {Il. OPTIMUM CONTROLLER FOR SIMPLIFIED HOMING SYSTEMS

The conventional overall homing loop can be depicted as shown in
Figure 2 and can be readily rearranged with target acceleration as an input in
the manner of Figure.3, If the dynamic lags of the seeker, autopilot, and
missile are neglected, the very simple model of Figure 4 is obtained. This
figure also includes an exponential decay model for target acceleration, this
being the model used by Speyer.® With reference to this figure, the problem
can be stated as follows: Given the observable states y q' ¥ g4’ and 'jt, the con-

trol vector is determined that will minimize the miss distance at intercept
only, i.e,,

y,(t) ] = minimum in the mean-squared sense subject to a constraint
d""t=T
on available control effort.

BORESIGHT ERROR -~ LINE OF SIGHT RATE

DISTURBANCE
MiSSILE.
SEEKER GAIN »{ACTUATOR =™ AUTOPILOT]

+

FIGURE 2. TYPICAL HOMING BLOCK DIAGRAM

The state equations can be written directly from Figure 4:

Xy = Xq
Xy = gX3 = gn!
X3 = "ZUX3

5J. Speyer, op. cit.
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or, ‘in vector-matrix form x =

FIGURE 4. SIMPLIFIED HOMING SYSTEM

= Ax + Bu
X 0o 1 0| x4 0
;{2 = 0 0 g Xq + -g nl
X 0 0 ~-2v| | x 0
R I i I R R

The gereral form of the minimum error regulator law is

T

J = x¢(T)Px(T) + [ [x* ()QB)X(t) + wk(HR(t)u(t)]dt

0

-l.a

Yd

*

and must be adapted to the specific problem: A single vector x; (y d) is to be
minimized at intercept only. Also, the control vector has a single component,

and the control constraint matrix reduces to a scalar.

be achieved by defining the P, Q, R matrices as follows:

therefore

— — —
1 0 0 0 0
P=10 0 0 Q=10 0
0 0 0 0 0

These conditions can



With these definitions, the index J becomes
T
J=x%T) +2 [ nldt .
0 1

The M matrix can now be written, since all of 1£s components are known.

— -
0 -1 ol o 0 0
|
0 0 g | 9 g/ 0
I
M=|0__ 0 |0t _°
0 0 0 : 0 0 0
o 0 0 : 1 0 0
0 0 0| o -2
e l g U__..

-—s 1 0 0 0 0 N
0 s g 0 -2/ 0
[sI - M] = 0 0 8 - 2v 0 0 0
0 0 0 8 0 0
- 0 0 0 -1 8 0
L0 0 0 0 -g s+21;—

This matrix must now be inverted, Since it is almost in upper triangular
form, the simplest method of inversion is to append a unit matrix and transform
the combined matrix to upper triangular form by means of elementary trans-
formations. This step yields



KR!

0
0 s g
0 0 8 -2y
0 0 0
0 0 0
0 0 0

o

0

0

0 0 1
:

- g/A 0 |0
i

0 0 }o
|

0 0 lo
|

2] 0 10
l

0 8+ 2v )0

0 0 1 0

0 0 Vs 1

0 0 g/s® g

g8 1

= [8] - M]

The inverse is obtained by solving the above matrix as six equations in
six unknowns, using each of the six column vectors to the right of the dashed
line in turn, Since the coefficient matrix is upper triangular, this step is
rather simple, and the inverse becomes:

[s] - M]~! =

e

0

L.
S

g w2 _gA 0
8%(8 - 2v) gt s’
-g g2/ g2/7\
5(8 - 2v) g’ 8" 0
1
S 0 0
8 - 2vu 0
0 L 0 0
8
a1 1
0 5? S 0
0 - S g 1
si(s + 2v) s(s + 2v) 8 + 2vu

The correctness of the above matrix can be verified by observation of the

product

[s]1 - M]™![(sI - M] =1 .



The ¢,, can now be obtained from the above matrix as follows:

i}
1 1 g
- s "8  8is - 2v)

-

= 0=l -~ -8
¢y(t) = L1 0 55 - 20)
1
0 0 8 - 2vu ]
£ £ ]
X g

A o8l g°
! 0 0 0
0 0 0

l_O 0 0
—d
1
—_— 0 0
S
1 1
- -1 — —_—
$ya(t) = £ ) S 0
_ g 1
82(8 + 2v) s(s + 2vu) s + 2v

The next step requires computation of s(T - t). However, since

8(T - t) = s(t) att = T - t, we may compute s(t) first. The multiplications
®4,P and ¢,,P can bc performed before taking the inverse transform, since P is
a number matrix.

10



& o.-H L 0 0
-& -
1 g - 1
= -1 = om— = £ 1 - 0 0
0P = £ x| 0 0 $2P . o
0 0 0 -85
b — s¥(s + 2v) 0 0
by1(t) + dp(t)P = £ [ ¢gq(8) + ¢yy(8) P]
— 0 h 0 0
= £ —12- o|=11i o 0
s
g
s¥(s + 2vu) 0 ] 0 0
. —_ p—
- h—
s - g/ 1 g
gl s? s?(s - 2u)
_o-1| g 1 -8
D1(t) + dyp(t)P = £ 7 S 5(s - 20)
1
0 0 8 - 2vu
a2 b ¢ |
= d e f
0 0 k

The a...k in the above matrices are symbolic representations for the inverse
transform of the actual matrix elements. In order to obtain s(t), the matrix
[¢11 + ¢1,P] must be inverted. Performance of this step on the symbolic

vepresentation yields:

o1
[S11(t) + 0O PI™ = om0

L.

—

ake

-akd

0

-akb baf - cae

-a% aGe - a’f

0 a(ae - db)

11



Then s(t) can be obtained by multiplication:

po——

.
akeh -akbh (baf - cae)h

1
8(t) = ak(ae - db)’ akei -akbi (baf - cae)i

akej -akbj (baf - cae)j __j

ha——

The function F(T - t) can now bé readily computed, since
F(T - t) = R™1B*s(T - t) =-il-[o -g 01s(t)

1
~ aak(ae - db)

_ ig _ (bf - ce)
‘A(ae-bd)[e‘ boTx ]t=T-t

The actual vector F(T - t) can be obtained by evaluating the inverse transform
of the above elements:

,a=.£’,-‘($3“/">=1.-é3--o b=£"(_—1-2-)=-t
8 8

6A

F(T - t) [-akeig akbig -(baf - cae)ig]t _

T -t

32 2\ s
- p-1 -8 _ g 2ut
f=2£ (s(s - 2v)>_ 2v<1 - e
- 1 2ut 1
= £ = <V = £-tif—] =
k (s - 21)) e i=4L sz> =t

Introducing above expressions into the F(T - t) vector, and substituting for t:

t=(T-t) =t
go

12



gt g
go
F(T-t)=F(t ) = — =1, -t -
go
' = - X “x * or,
The optimum controller uopt F(t go) (x4, Xg, Xg]
~x;
u_, = -N'[-C; =C; =-Ci]|x,
opt
X
i
or
X1
= N'[C; C, C X
Yopt N'[Cy C; Gyl | x,
X3
I
where
3g%t 3
N =+ o
1
Cy = 2
stgo
1
Cg =
Stgo
. 2ut 2ut -2ut
vt e B%+ 1. B% ot s
Cs = Zut - % 2
2 go, 4u°t
4ye tgo

13



In terms of the originai gystem parameters, the expression for uopt can be
written:

-Zuto
N yd . e B 4+ 2ut -1
u =N, 88— f=—<+y |+ N o2 n,
opt ! gtgo tgo d vt o

The above results are identical to those obtained by Speyer® by direct use of
classical variational methods. Thus, the two techniques are equivalent.

If the control effort constraint is removed, i.e., A is made zero, the
term N' becomes

3ght ?
N? =_—_g_oz—.= 3,
thgo

thus reducing to a conventional navigation ratio, Also since thé angle A is
approximately equal to the ratio

A ol
R

where R = missile to target range, the following is obtained:

e ®
o Ryd = ydR
A - Rz

14

but R = -Vc where Vc is the closing velocity, and
R=V¢t .
¢ go

Substitution into f\ equation ylelds:

. 1 LJd
A5t Va1
¢ go go

Thid,

14



vide[—d.s
Pt d
c go ‘go
This can be substituted into n, equation to render
~2ut 7]
N'Y e B% 4 out -1
nl = c A+ N ) nt ’
g 402t 2

which, when A = 0, is recognized to be the conventional proportional navigation
law with a bias correction for target acceleration.

The results to now are not new, as indicated by the previously noted
references. The derivations serve as an independent verification of prior
work, and also verify the adequacy of the method of solution used. This
method will be applied in the next section to the same system, augmented by
an autopilot lag.



Section [V. OPTIMUM CONTROLLER FOR HOMING SYSTEMS WITH AUTOPILOT LAG

Figure 5 depicts the same simplified icming system of the previous
section, with the addition of a single time constant r between achieved and
commanded accelerations. The state equations can be obtained from the

figure as:

Xy = Xg
[
X, = 8X3 ~ BX%q
;{3 = -2UX3
n
;(‘ = .-—xi-'l' c
T T
which in vector matrix form, become
-.- — — e r——
X4 0 1 0 01 x 0
Xs 0 0 g -g || % 0
- + n
Xs 0 0 <2v 0| =x 0| ©
L
X4 0 o0 0 -w X
R I o Il I
where
Al
w ==,
T
The generalized index J
T .
J = x* (T)Px(T) + f [x* (t) Q(t)x(t) + w* (t)R(t)u(t)]dt
0

is reduced to the desired form by defining

18
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P = . Q=[o]4x4; R = A = scalar
0 0 0 0

0 0 0 0
S —

which yields the same form as before:

J = x(T)? + AfT n 'dt .
0
The matrix M is obtained next:

F—(_) -1 o o o 0 0 o |

0 0 -g g | o 0 0 0

0 0 2v 0 : 0 0 0 0
M=]|0 0 0 w | o0 0 0 -—“’{-—

0 0 o ol o 0 0 0

0 0 o o : 1 0 0 0

0 0 0 00 g -2v 0

0 0 o oo -g 0o -

from which [sI -~ M] can be formed:

18



8 1 0 0 0 0 0 0

0 s g -g 0 0 0 0

0 0 8 = 2v 0 0 0 0 0
w?

0 0 0 S - w 0 0 0 "T

[sI - M] =

0 0 0 0 s 0 0 0

0 0 0 0 -1 ] 0 0

0 0 0 0 0 -g s + 2v 0

0 0 0 0 0 g 0 s + w

This matrix is almost triangular and can be rether casily inverted, by the method
outlined in the previous section. This inverse is given by

11 K - ’ ol giu? o ezl
s st s(s - 20) §T(S = &) | AS (5 = ) (8 ¢ w)  ASHS = w) (B + w) AS2(S = w) (B * w)
o L -R K l g’ Bl 0 gu?
s S(8 - 2y) S{8 = ) I Asts « @) ls + w)  ASTIS - w)is W) AS(S - @) (s + w)
1
4] §] 0 (] 0 0
v 5 -2y '
0 0 0 ! | =2 . v e
S - AST(S =) (8 - &) As(s =) (s -w) AfS = w)is ~w)
(st - M7 e ._’__ o — o —— — ——— — —— e
[ 1) O 1) | ’5" (1] 4] 3}
| 1 1 0
U 0 [} ] | — —S— Q@
s
| . )
0 0 0 0 —bk 5 0
| 8 (s ¢+ 2v) si{s+ 2y) s - 2u
o 0 i n —& — v SR
I s°8 - w) S(s + w) 8+
L -

19



e

Correctness of this matrix can be verified by multiplying it by [sI - M] and
observing that the unit matrix results, The ¢ . are obtained as before from the

above matrix, since 1
¢11(8) $12(8)
$21(8) $2(8)

[s] - M]"” =

The next step in computing s(t) requires formation of the expressions
[2(t) + ¢n(t)P]
[611(t) + ¢43(t) P)

Since P is a number matrix, the above expression can be formed before inverse
transformation of the ¢1 j:

— -
"1' 0 0 0
'sl{ 0 0 0

[dag(t) + Pga(t)P) = £7*
2 g 0 0 0

8°(s + 2v)
-8

s+ © O 9_1

h 0 0 0]

20



[D1(t) + dyp(t) P) = L7

/

88 - w)(8+w)+

WY/A

2, 2 1

ALY

g 1 -g
—?((B-w)w*'w) 8 8(8~2v)

-82

*

bmmen

(8-w)(8+w

Let s(t) of the above matrix be denoted symbolically:

pranas

ay4 a2 13

as1 822 23
0 fgg

841 0

a4

94

0

ay

m——ad

gw® £
A g® 8°(s - 2u) 8°(8 - w)
g
s(s8 - w)
1
0 8 -~ 2v 0
1
)) 0 0 8 - w

This matrix must now be inverted, since s(t) requires (¢ + ¢4,P)"!. This

inverse is shown on the next page, where the A

indicated:

A1=

899811 = 19894

a1t

A24811 = 81844

aiq

_agaq
ayy

Q4811 = 448y

aqy

Ay

1 i

8ggay1 = ap9d43
a4y

_B4
ayy

_ 341843
a1y

a4

ayq

Ahg - AsAy

_ AsAy - AgAy
Aqagg

. and B, are defined as

21




|
B i o= k3
I | - i _ : ‘g
l...lllulllu—l.!.l-lll €y I_‘II o T
0 - 0 0
T
R I __ _
—m—< _ mnﬁﬁm—dw _ um~< Iqly
n<| vmm<nnﬁ - ylg- — nmn< - Ig Nmm< - qva
leylytle Igliytéelip _ - lglylle Igliylle
qa°Vv a'v _ qa'v _ a'v

-<=.N - n<~—.ﬂ— v“,ﬂnnﬁﬂmﬁJ« - n—ﬂum—< - Avmn<nn.w + N<—mvﬁ.ﬁm nmmdwmu.m + tgile - v«.mnm—<l _ igitely - Nﬁﬁnmn&« + N«d«mv< - Ighy

22



The correctness of this inverse is extremely difficult to check by the
methods previously used. However; it can be easily checkéd by assuming an
arbitrary, nonsingular numerical form for [¢y1 + ¢4,P] with zeroes in the
appropriate positions. The inverse can then be computed via the general form

of page 22 and then multiplied by the original matrix. If the unit matrix results,
the generalized inverse can be assumed to Be correct. The matrix

prmn —

1 2 1 1
2 3 1 1
0 0 1 0
1 0 0 2

S asmmnd

is of the required form, and the inverse, as computed from the formula, is

EREEE
R
6o o 3 0
K

which is readily observed to be correct.
For simplicity, [¢y + ¢4,P]~! will be denoted by

e ——

C; C C Cy

e ——

since only the first row will be needed for s(t). The latter thus becomes

23



‘g o g g

ic, 1C, iC;  iC,

8t =1 4c, jo, 4G IC
kCy - kC, kC, kC,
S —
and since
1
F(T -t) = R"B*S(T - t) = )\[0 0 0 wls(T ~-1t) ,
it becomes

BT o) = |9KC1 WGy  wkCy wkC‘TJ
A A A At = (T -t)

The optimum controller u__, can now be computed from

opt
)
= _ - | X
uopt = -F(T - t)
X3
|

The remaining task consists of obtaining F(T -~ t) in terms of the original
system parameters. To this end, the gains C1 in terms of the a,, are first

i
computed: J
C. = 82284
y =
844 (841897 ~ 812871) = a4g(ay@ = appay)
C ~849844
2 =
844 (213897 ~ 81282¢) ~ 841(214Q5 = 21yay)
ey = 841/833(81p8ps = ag08s)

8y (ayq8yy - 840891) = 841(B81487 =~ Ayp8y)

= 819894 = 820814
Ag4(8158y7 ~ 8y283¢) = 84q(A14897 = Apply)

24



The veotor F(T - t) can now be restated as

wk/A

aq(8y1829 = 81p8p1) =~ 841(8y4892 - 828)

F(T -t) =

844, .
Ezzau =819844 -5‘-;;(312323 - 8p843) (agpagy - azzau]

The values of the a,, and of k are next obtained by inverse transforming the

ij

1 appropriate elements:

gzw

8%(8 - W) (8 + W) + 2

_ o=t
ay = & 84(8 ~ w) (8 + w)

g -witd wt -wt
B = 1+2wax[3 - €
£ - 82 = «t
[ 2ut .
- g -g l1-e
= L R A = ——————
a = L %(s - zﬂ 2v E* 2v ]
3.14 = £'-1 82(8 - w] = —E+ ]

[P
R <s3(s - w)(s + w)ﬂ

2 2 2 2
_é g g wt g -wt
= + — o -
221 [‘Zk WA T 2wA € 2w © ]
a9y = £-1<%) =1
-e-1|—"8 | _. 8 2ut
agy = £ 8(8 - 2v)|  2v (1 - € )

— -
ay = £ ——-——s(sg_ ) =—-§-(1 - ewt)
2t mel] e

aqs

25



_ _1_1 __ZUt
o I ey
[ gt
au=£ 2
8°(8 -~ w)(8 + w)
g 8 wt g ot
a“_h 2w7\e +2w7xe
1
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Redefining (T - t) as tgo and inserting tgo for t in above expressions, we obtain

where

and
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The common e 5° terms cancel. Additionally, if the expression is

multiplied and divided by gtgoz, the solution form becomes:

B L 2t 2ut
0
1 1 1 [2vt_ e B . 8.1
Flt ) = -N'| =%~ g9 — :
B go gtgo e 8% 2
go
wt wt
1 jwt_e go-e go+1
— go
w2 wt
e got 2
go —

where

-wt
—6enyd 3 42 21y _ 80)
6w gztgo + 6w gztgo <1 e
(D

-N' =

and (I) is as previously defined.

The optimum controller u__, is computed from

opt
X4
Xy
uo ¢ = -F (¢t o = nc
p g Xq
X4

Therefore, in terms of the original system parameters, the control vector
becomes:
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Rearranging slightly yields

N! yd .

N S fe— + y

c t d
gtgo go

+-o-0 [

but from the previous section, it was shown that:

Ya

[ ]
tgo * y'd - vctgoA '
and therefore nc becomes
~-2ut
VN, 2utg°+e 80 _
= '
B ="g A*N auit_2 "t
go
-wt
wtgo + e g0 _ 1
- N' 2 n .
2
w tgo L

The first three terms are identical to those previously obtained for the
non-augmented case and represent biasad proportional navigation. The last
term is an additional bias term due to the autopilct lag, and it is interesting to
note that it is identical in form to the target bias term. It should be noted that

when the lag is removed (i.e., 7 — 0 or w — =), the last term drops out,
since

go _
lim wtgo te 1
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The nature of N', the navigation ratio bears further study. This quantity
was defined on page 27. When divided by 2w?, it can be rewritten

3gt 1  -wt
3git 3-8 (1 ¢ B

N' = go w
3@t 6ght o e gt 20t
an o+ gt S B B P go 3¢ 3¢
go w? w? w 2w 28

If the autopilot lag is eliminated by letting w — <« (r — 0), the above
reduces to:
3
3¢,

PETE
3A + gtgo

N' =

which is identical to the results previously obtained, Thus, the entire optimum
controller reduces to the previously derived quantities when the lag term is
eliminated. Where w is finite, however, it seems to play a significant part in
the value of N', In order to observe the behavior of N' as a function of time
and w, letA = 0, i.e,, remove the constraint on control effort. If this is done,
the g” terms drop out, and N' becomes

3.*,02 -wto
st 3.8 |l1.¢ B
N' = go w

[
[~}

For typical values of tgo’ the above equation was programmed with several
values of w used as a parameter. The resulting plots of N' versus tgo are shown

in Figure 6, from which one concludes that for significant autopilot time con-
stants, N' deviates considerably from the limit value of 3, and is also
nonstationary.
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Section V. CONCLUSIONS

It has been shown herein that the Ogata solution of the minimum error
regulator problem can be used to solve the homing problem, This was done by
indepeudently solving a previously solved problem and obtaining identical results.
Tke subject method of solution is (at least in principle) straightforward. For
high order systems, the computational aspects become menacing, but could be
handled by use of the digital computer.

The effect of autopilot lag was also studied using the subject method, and
several significant conclusions can be reached:

1) The navigation gain is a nonstationary function that varies
significantly with the autopilot lag.

2) The optimum controller requires an additional bias term appendad
to the conventional biased proportional navigation vector. This
term is identical in form to that resulting from target acceleration,

3) The added term requires that the actial missile acceleration be
measured, since this is a required state. However, in cases where
this state is not explicitly measned, the commanded acceleration
could be passed through a synthetic time constant. The latter would
be tailored to match autopilot response, and thus an approximate
measure of n, could be obtained.
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